
Order Is A Lie

Are you sure you know how your code runs ?

Order in code is not respected by

● Compilers
● Processors (out-of-order execution)
● SMP Cache Management

Understanding execution order in a
multithreaded context is out of reach of a

human mind.

Compilers and Order ?

Order and Side Effects
int next() {
 static int x = 0; return x++;
}

void g() {
 int x = 0, y, tab[32];
 // can be equivalent to:
 // tab[0] = 1
 // tab[1] = 0;
 // ...
 tab[x++] = x++;
 // x = 2 - 1 or 1 - 1 ?
 y = x + --x;
 // x = 0 - 1 or 1 - 0 ?
 x = next() - next();
}

Out Of Order ?

OoO

OoO

Do you know what a pipeline is ?
Out-of-order is the next step.

1990: first microprocessor
IBM Power 1

Not a new a idea

1964/1966: first out-of-order machine
CDC6600 & IBM 360/91

OoO

Pipeline …

Pipeline … with OoO

OoO

OoO

int f(int *a) {
 int x = 1, y;
 y = *a;
 x += 41; // Don't need previous statement
 *a = x; // Require 2 previous statements
 return y;
}

And The Cache ?

Cache

multiple processors + slow memory
=

a lot of hardware caches !

Cache Coherency

M modified
line is owned by 1 core

E exclusive

S shared line is shared

I invalid line is E or M elsewhere

Cache Coherency

M E S I

M ✘ ✘ ✘ ✔

E ✘ ✘ ✘ ✔

S ✘ ✘ ✔ ✔

I ✔ ✔ ✔ ✔

Cache Coherency

Cache Coherency

● Line invalidation is expensive
● To improve perf, procs use:

○ Store Buffer
○ Invalidate Queue

● We need barrier !

So what can we do ?

Theoretical View

Determinism can be defined through the

observation of memory states history.

Theoretical View

A program is deterministic if we don't observe

different states history through (all possible)

executions.

Linearizability

An history is atomic if:

● its invocations and responses can be
reordered to yield a sequential history.

● that sequential history is correct according
to the sequential definition of the object.

● if a response preceded an invocation in the
original history, it must still precede it in the
sequent reordering

Dealing With Memory

I/O Automaton can be used to
describe properties and behavior

independently of concrete hardware
implementation.

Dealing With Memory

Front-End Object RProcess

Object A

RESPONDRESPOND

INVOKEINVOKE

Main Results

● Wait-free operations are possible

● The only meaningful primitives are:
○ Compare-and-Swap (CAS)
○ Load-Link/Store-Conditional (ll/sc)

● Order is not required for determinism !

Compare And Swap

bool CAS(int *loc, int cmp, int newval) {
 if (*loc == cmp) {
 *loc= newval;
 return true;
 }
 return false;
}

ll/sc

● Load from memory and link to the cell
● Store in the cell if no write was made

● More powerful than CAS
● More RISC oriented
● Many implementations are weak

ll/sc v.s. CAS

● Hardware ll/sc is often broken

● Most broken ll/sc can simulate CAS

● Most algorithms are described using CAS

Memory Barriers
● Release: force all write operations to be

finished before the barrier

● Acquire: prevent all read operations to

begin before the barrier

● Full: acquire and release at the same time

Barriers will also flush Store Buffers and

Invalidate Queues.

Memory Barriers
void worker0(char *msg, char *shr, int *ok) {

 for (char *cur = msg; *cur; ++cur, ++shr)

 *shr = *cur;

 // need a release barrier

 *ok = 1;

}

void worker1(char *shr, int *ok) {

 if (*ok) // need an acquire barrier

 printf("%s\n", shr);

}

Non Blocking

Non Blocking ?

● It's all about progression

● We don't want locks

● We want minimal system interactions

● We want to scale upon heavy contention

Linearization Point
● Usual mistake: atomic means one instruction

● For observers, an operation is atomic if there's
a point marking the change

Linearization Point

No Visible Change Updated

Operation

Lock-free

As long as one thread is active, the whole
system makes progress.

A lock-free algorithm should leave shared data
in correct states between linearization points.

● Rely only on CAS
● Usual schema is:

a. Prepare
b. Acquire entry data points
c. Prepare update
d. Update (CAS) if entry are valid or go to b

● d is the linearization point

Lock-free

Lock-free

Existing Algorithms (mostly in Java) for:

● Stack
● Queue
● Linked list
● Skip-list
● …

Lock-free Queue is a classic (PODC96)
Implemented for years in Java

Not in C++ due to lack of memory-model.

1. Acquire tail (push) or head (pop)
2. Prepare for update
3. When queue is in a temporary state

(incomplete pop) finished the job and retry
4. In all cases, if acquired pointers have

changed, retry, otherwise do the update.

Lock-free Queue

Lock-free and Memory

In most lock-free algorithms, threads
can hold pointers that can be deleted

by other threads.

Lock-free and Memory

● First attempt: use a recycler
○ avoid early free
○ do not protect from ABA issues

● Use a garbage-collector ?
○ solves early free and ABA issues
○ are GCs wait/lock free ? …

ABA problem

A B

B

A B

Read pointer A

Entry is now B

Read pointer A

Lock-free and Memory

Two main solutions:

● Double-word based solutions
○ using pair pointer/counter
○ Only x86-64 provides 128b CAS

● Hazard Pointers
○ Simple
○ wait-free
○ not hardware dependant

Lock-free Performances

● Academics: better perf than lock-based algos
● Java: implementation agrees
● C++ ? None officials, mine has strange results.
● Pure bench speed-up are not clear
● Hybrid algorithms (TBB) can do better with

limited number of threads.

Wait-free

In a given set of processes, each
process can perform its action in a
finite (bounded) number of steps.

Wait-free

● Far more difficult than lock-free
● Implementation are far more expensive
● Can't use failure/retry loop

● Most implementation use helping system:
1. Make a forward step for another thread
2. Start its own action step by step

● All pending operations have progression !

Wait-free

Recently (2011) a new approach appears:

● Mix lock-free algo with helping mechanism:
1. Try to help every N calls
2. Bounded failure/retry loop (lockfree)
3. Fail ? Move to helping mechanism

● Provide similar perf as lock-free algos.

RCU by Example

Logically after insert

Logically before insert

RCU by Example

Conclusion

?

